
Tammy Dahlgren, Tom Epperly, Scott Kohn, 
and Gary Kumfert

Center for Applied Scientific Computing

Common Component Architecture Working Group
October 3, 2002

Babel Support for FORTRAN 90:

Status

This work was performed under the auspices of the U.S. Department of Energy by the University 
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES -150102

TLD 2CASC

Overview

l Initial Goals
l Modifications

—Command Line
—SIDL Runtime
—Back-end

–Directory structure
–Fortran
–Writer

—Regression Tests
—Build System

l Example
l Future Work



TLD 3CASC

A minimalist approach has been taken for 
quicker turn-around.

See Tom Epperly’s talk.------Subroutine 
name lengths

New splicer 
block

---Use statement

end subroutineendSubroutine 
termination

!CComment style

Although F90 handles 
both, the Impls are 
generated in free-form

FreeFixedFormat

Standard.f90.fFile extension

CommentF90F77Feature

TLD 4CASC

Initial modifications focus on maximizing 
code re-use within the Babel compiler.

l Support new language option at command line
l Generalize existing back end code

—Directory change  (i.e., f77 è fortran)
—Common
—Fortran
—Writers

l Utilize tweaked F77 regression tests for F90
l Modify build system to support “standard” autoconf 

macros for F90/95

l Documentation

Modifying the build in a general way has been a very painful process!Modifying the build in a general way has been a very painful process!



TLD 5CASC

Only 7 compiler files were impacted by 
the modifications.

Initializes the first tab stop, tab spacing, 
line break, and comment for F90.

backend/writers/
LanguageWriterForFortran.java

Indents arg declarations and ends 
subroutine for F90.

backend/fortran/
StubDoc.java

Generates sub’s splicer block, indents 
arg declarations, and ends subroutine 
properly for F90.

backend/fortran/
ImplSource.java

Returns “.f90” impl extension when target 
language is F90.

backend/fortran/
Fortran.java

Has F90 comment character and impl file 
extension.

backend/
CodeConstants.java

Registers F90 server, client, and makefile 
generators.

backend/
CodeGenerationFactory.java

Recognizes F90 as a valid language.UserOptions.java
Change(s)Compiler Source

TLD 6CASC

Command line changes simply involve 
adding the new language identifier.

Usage  babel [ -h | --help ]
or   babel [ -v | --version ]
or   babel option(s) sidlfilename1 ... sidlfilenameN

where help, version, and option(s) are
-h | --help Display usage information and exit.
-v | --version Display version and exit.
-p | --parse-check Parse the sidl file but do not generate code.
-x | --xml Generate only SIDL XML (for repository update).
-clang | --client=lang Generate only client code in specified language 

(C | C++ | F77 | F90 | Java | Python).
-slang | --server=lang Generate server (and client) code in specified language 

(C | C++ | F77 | F90 | Python).
-odir | --output-directory=dir Set Babel output directory ('.' default).
-Rpath | --repository-path=path Set semicolon-separated URL list used to resolve symbols. 
-g | --generate-subdirs Generate code in subdirs matching package hierarchy. 
--no-default-repository Prohibit use of default to resolve symbols. 
--suppress-timestamp Suppress timestamps in generated files.
--generate-sidl-stdlib Regenerate only the SIDL standard library.



TLD 7CASC

As an example, suppose we have a vector 
spec that includes a norm interface.

interface Vector {
double norm ();

…

}

Vector.sidl

TLD 8CASC

Currently generated F90 files are very 
similar to their F77 counterparts.

Vector.sidl

Vector_IOR.c

Vector_IOR.h

Vector_fSkel.c

Vector.fif

Vector_Impl.f90

Vector_fStub.c

Would like to see some examples of real F90/95 code to help define the module file.



TLD 9CASC

The resulting Impl file snippet below 
illustrates the generated code.

subroutine Vector_norm_impl(self, retval)
! DO-NOT-DELETE splicer.begin(Vector.norm.use)
! Insert use statements here…
! DO-NOT-DELETE splicer.end(Vector.norm.use)
implicit none
integer*8 self
double precision retval

! DO-NOT-DELETE splicer.begin(Vector.norm)
! Insert the implementation here…
! DO-NOT-DELETE splicer.end(Vector.norm)
end subroutine

Vector_Impl.f90

TLD 10CASC

Future Work

l Near term
—Complete build changes
—Complete F90 regression tests
—Update the User’s Guide

l Long term
—Address Fortran 90 array descriptors 
—Generate module files

l Anything else?


